
CONTINUOUS
DELIVERY
PIPELINE

Rodrigo Botti
Backend, Frontend, Ops, Fullstack (?)

NEXA: Integrations Team - Crawler, APIs, Ops, Fullstack (?)

GDG Campinas: Organizer

AGENDA

▸ Current Scenario
▸ Continuous Delivery
▸ Canary Release
▸ Tooling
▸ Future
▸ Q&A

!!! DISCLAIMER !!!

1.
SCENARIO

Technology
Platforms

MAIN
TECHNOLOGIES

MAIN
TECHNOLOGIES

MICROSERVICES
Advantages

MODULARITY

Reduced codebase,
easier to reason
about, develop, test
and deploy.

Single
responsibility.

PARALLELISM

Multiple teams
working on separate
services.

SCALABLE

Faster feature
delivery.

Independent
horizontal/vertical
scaling and failure
handling.

MICROSERVICES
Requirements

*** AUTOMATION ***

Automation is key
for having speed,
scalability /
elasticity specially
when dealing with a
distributed services
application.

DISCOVERY

Service discovery by
name: cloud-level
DNS, service-mesh
level DNS,
registration,
client-side load
balancing.

OBSERVABILITY

Monitoring,
metrics/health
gathering, central
tracing, APM, alarm
management.

Avoid "needle in a
haystack"
debugging.

MICROSERVICES
Anatomy (Kubernetes)

▸ Deployment
▹ Pod: Container (Image) + Resource limits
▹ Replica set: count + deploy strategy

▸ Service
▹ Deployment load balancer
▹ Ingress traffic

▸ HorizontalPodAutoScaler
▹ Deployment replica set horizontal scaling

▸ ServiceMonitor
▹ Prometheus metrics exporter

▸ Ingress (*)
▹ Cluster gateway L7 router

MICROSERVICES
Anatomy (Kubernetes)

Service AService B

Pod A 1Pod A 2Pod B 3 Pod B 2 Pod B 1

Ingress

<domain>/svc-b <domain>/svc-a

External Traffic

SHOW ME THE CODE!

Deployment

Service HPA

Ingress SVC Monitor

2.
CONTINUOUS
DELIVERY

Concept
Pipeline

“Produce software in short cycles
Reliably released at any time
Building, testing and releasing faster
and more frequently
Straightforward and repeatable
deployment process

PIPELINE

Code Push + Webhook

Lint

Test + Coverage

Quality Metrics Check

Build + Push Image

Deploy (Canary, Blue/Green, etc)

3.
CANARY
RELEASE

Concept
Pipeline

PIPELINE

Deploy QA Environment (Homolog)

Deploy Baseline

Canary Analysis

Deploy Canary

Delete Baseline
Delete Canary

Deploy Production
(Rolling)

Success/Error

4.
TOOLS

Topology
Automation Server

Integration Tests
Code Quality

Deploy
Canary

Webhook

Code Quality Check
(REST calls)

DeployTrigger CD

Canary Analysis

(LEEEROOOOOOOOOY...)
JENKINS

▸ Automation Server
▸ Pipeline
▸ Groovy DSL
▸ Plugins

(LEEEROOOOOOOOOY...)
JENKINS

▸ Kubernetes Plugin
▸ Custom Library
▸ Opinionated DSL

App Test Pod

App Container DB Container Cache Container

SHOW ME THE CODE!

Pipeline

DSL

DSL

DSL

DSL

Running Pipeline Pod

QUALITY CHECKS
SONARQUBE

▸ Quality Metrics
▹ Code smells
▹ Bugs
▹ Vulnerabilities
▹ Code coverage

▸ Quality Profiles
▸ Quality Gate

MONITORING
PROMETHEUS (OPERATOR)

▸ Monitoring
▸ Time-series database
▸ PromQL
▸ Alerting

DELIVERY
SPINNAKER

▸ CD Pipeline
▸ Canary Release
▸ Multi-cloud

▹ Kubernetes
▸ Abstracts infrastructure elements (*)
▸ Netflix

WEB
UI

Canary
Analysis

CONCEPTS/ABSTRACTIONS
SPINNAKER

▸ Application
▸ Cluster
▸ Server Group
▸ Load Balancer

▸ Application
▸ Cluster == Namespace
▸ Server Group == Deployment
▸ Load Balancer == Service

PIPELINE

Deploy QA Environment (Homolog)

Deploy Baseline

Canary Analysis

Deploy Canary

Delete Baseline
Delete Canary

Deploy Production
(Rolling)

Success/Error

PIPELINE

Full Manifest
N = homolog

Deployment
N = prod, L = baseline

Canary Analysis
Comparing pods: canary vs baseline

Deployment
N = prod, L = canary

Delete Deployments
N = prod, L = [baseline, canary]

Full Manifest
N = prod

Success/Error
Check canary stage result

Pipeline Overview

Stage: Configuration

Stage:
Canary
Analysis

Canary
Config

Canary
Config
Metric

Canary
Config
Filter

Canary Analysis Report: Success

Canary Analysis Report: Failed

POD NOT UP (ENV VAR ERROR)

Stage: Check

5.
FUTURE

P.O.C.

kubernetes-cluster-sa-east

namespace: spin namespace: jenkins namespace: production

Spinnaker:

Deck
Gate
Kayenta
...

* in single box for
diagram simplicity

Jenkins master

Jenkins agent

Jenkins job slave

Jenkins job slave

feature toggle

profiles

labs-properties

ONGOING
k8s-cd-cluster-us-east

namespace: spin namespace: jenkins

Spinnaker Jenkins

k8s-app-cluster-us-east

namespace: production

GKE

namespace: default

migrated migrating

ONGOING

▸ Migrating CIs to Jenkins
▹ Wercker
▹ * CircleCI *
▹ Saves $ + Higher concurrency
▹ Standardizes pipeline and quality measures

▸ Jenkins pushing to both registries
▹ ECR
▹ GCR

▸ Spinnaker aware of both clusters
▸ Kayenta metrics

▹ Response time
▹ Error rates
▹ Resource consumption

FUTURE

▸ Canary Analysis config improvement
▹ What metrics?
▹ Groups weights
▹ Length/Windows

▸ Service Mesh?
▸ Manifests from SCM
▸ Pipeline in SCM
▸ Canary Analysis with business metrics

▹ Custom collector?
▸ Automatic feature toggle management

6.
Q&A

7.
"THANK YOU"
NOTES

https://liviasaude.com.br

Contact
rodrigo.botti@gmail.com

rodrigo.botti@nexadigital.com.br

https://www.linkedin.com/in/rodrigo-botti/

